1. [6 marks] (R problem) Generate 100 samples from a MA(2) process using the arima.sim() function, make a time series plot of the data, then calculate the sample autocorrelation function and sample partial autocorrelation function (PACF). Plot the correlogram and the sample PACF.

2. [7 marks] Let $\{Y_t\}$ be the AR(1) plus noise model given by

$$Y_t = X_t + \zeta_t$$

where $\{\zeta_t\} \sim WN(0, \sigma_{\zeta}^2)$ and $\{X_t\}$ is the AR(1) process with correlation ϕ and variance σ_x^2 , i.e.

$$X_t - \phi X_{t-1} = Z_t, \{Z_t\} \sim WN(0, \sigma_z^2),$$

and $\mathbb{E}[\zeta_s Z_t] = 0$ for all *s* and *t*.

- i) Show that $\{Y_t\}$ is stationary and find its autocovariance function.
- ii) Show that the time series $U_t := Y_t \phi Y_{t-1}$ is 1-correlated. It follows that U_t is an MA(1) process.
- iii) Conclude that {*Y*_t} is an ARMA(1,1) process and express the three parameters of this model in terms of ϕ , σ_{ζ}^2 and σ_x^2 .

(this is question 2.9 in your text)

- 3. [5 marks] Question 3.1 in your text.
- 4. [6 marks] Show that the two MA(1) processes

$$\begin{split} X_t &= Z_t + \theta Z_{t-1}, \\ Y_t &= \tilde{Z}_t + \theta^{-1} \tilde{Z}_{t-1}, \end{split} \qquad \begin{cases} Z_t \} \sim \mathsf{WN}(0, \sigma^2) \\ \{\tilde{Z}_t\} \sim \mathsf{WN}(0, \sigma^2 \theta^2), \end{cases} \end{split}$$

where $0 < |\theta| < 1$, have the same autocovariance functions. (this is question 3.6 in your text)

5. [6 marks] Consider the ARMA(2,1) model

$$X_t = 1.8X_{t-1} - 0.81X_{t-2} + Z_t + 0.5Z_{t-1}.$$

- i) Is this model causal?
- ii) Is this model invertible?
- iii) Compute the first four coefficients of the causal representation

$$X_t = \sum_{j=0}^{\infty} \beta_j z_{t-j}.$$

(for graduate students, or undergraduates seeking extra credit)

6. [18 marks] Implement a function that generates *n* realizations for a MA(q) process. That is, your function should generate a suitable number of random variables $\{Z_t\} \sim WN(0, \sigma^2)$ (where σ^2 is

a parameter), and, taking $\theta_1, \ldots, \theta_q$ as additional parameters, return $X_t = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q}$. Ensure your function is sufficiently generalized so as to allow for a range of n, q, and σ^2 parameters to be set, and ensure that you include a check on the values of the θ_i 's.

You should feel free to do some research to find the best (or at least a reasonable) method for simulating the $\{Z_t\}$ values. Do not implement your own random number generator.

7. [6 marks] For the ARMA(1,1) process given by

$$X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1},$$

(where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\phi + \theta \neq 0$), show that the autocorrelation function for lag $h \geq 2$ is

$$\rho(h) = \phi^{h-1}\rho(1).$$

8. [6 marks] Show that in order for an AR(2) process with autoregressive polynomial $\phi(z) = 1 - \phi_1 z - \phi_2 z^2$ to be causal, the parameters (ϕ_1, ϕ_2) must lie in the triangular region determined by the intersection of the three regions,

$$\phi_2 + \phi_1 < 1,$$

 $\phi_2 - \phi_1 < 1,$
 $|\phi_2| < 1.$