
Optimization Algorithm

1. Draw a clearly labeled diagram representing the quantity you are interested in opti-
mizing, as well as the relationship between the inputs.

2. Determine if there is a separate constraint equation or if the constraint has been “baked
in to” your diagram. If the former, write down the constraint equation.

3. Write the fundamental optimizing equation for your problem.

4. If you have both optimizing and constraint equations, substitute for one of the variables
in the optimizing equation to get a function of only one variable.

5. Find the critical points of the optimizing equation.

(a) Find the derivative with respect to the single variable of the optimizing equation.

(b) Set this equation equal to zero.

(c) Solve for all solutions, label these as c1, c2, . . ., where c stands for “critical point”.

6. Perform the first or second derivative test for each critical point to classify them as
minimums, maximums, or neither. These are local only.

7. Justify why a particular local minimum/maximum is actually a global minimum/maximum,
using either the boundary values method or the theorem from class (Thursday, Jan.
24). These two methods can be reviewed in your text on pages 278 (The Closed Interval
Method) and 328 (First Derivative Test for Absolute Extreme Values)

Example Problem: A piece of wire 10 m long is cut into two pieces. One piece is bent
into a square and the other into a circle. How should the wire be cut so that the total area
enclosed is a minimum? What about if the area is to be a maximum?

Solution: begin by drawing a picture:
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Now, write the constraint equation from the picture as:

10 = x1 + x2.

Now, consider our optimizing equation. We want to consider the surface area enclosed
by the wire from both a square and a circle. The area of a square is length times width (or
width squared, since square), and the area of a circle is πr2. It doesn’t matter which x is
assigned to each one, so let x1 length of wire be the square, and x2 length of wire be the
circle. Then:
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where x1 is bent into a square, so each side has length x1/4, and x2 is bent into a circle,

so 2πr = x2 (the circumferance), giving r =
x2
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. Now, substitute in our relationship,

x2 = 10− x1, giving
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We now differentiate this equation with respect to x1:
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and set it equal to zero:
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Then, solving this, we have
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or (using our calculators) x1 = 5.60.

At this point, we have found a single critical point at c1 = 5.60. We do not know if it
is a minimum or maximum, and we do not know anything about the global properties of it.
Start by performing the first derivative test:
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where we use x = 5.5 and x = 5.7 as sample values for evaluating A′(x). Note that you
could also fill in these +/− values by considering
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which, upon simplification, is
A′(x) = 0.284x− 1.592.

As this is clearly linear, we can trivially fill in the 1st derivative table. In conclusion, since
the 1st derivative test shows a transition from negative to positive at c1 = 5.60, this critical
point represents a local minimum.

To determine if this is a global minimum, we can apply either of the two techniques
we reviewed in class (and mentioned above in the algorithm). Since we have such a simple



derivative function, in this case we will make the argument that since we have only one
critical point and the derivative function is always negative for x1 values less than 5.60
and the derivative function is always positive for x1 values greater than 5.60, the function
A(x1) has an absolute minimum at x1 = 5.60. At this point, we are done the finding of the
minimum total area.

To find the maximum total area, realize that we have no critical points which are local
maximums, so apply the Closed Interval Method and check the endpoints:

A(x1 = 0.0) = 7.96

A(x1 = 5.60) = 3.50

A(x1 = 10.0) = 6.25

and thus the global maximum area occurs when x1 = 0, which forces all of the wire to be
used in the creation of the circle. This makes sense, as the most efficient shape for enclosing
area is that of the circle. Note that even though we have no local maximums in the domain
x1 ∈ [0, 10], we still have a global maximum for x1 = 0.


